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1. Introduction

We briefly review the Green’s function method for solution of the Christoffel equation and
a computationally efficient method for calculating the Green’s function for anisotropic
solids. We describe the virtual-force method for satisfying the boundary conditions to
account for discontinuities in the solids. The virtual-force method consists of applying a
distribution of virtual forces just outside the domain of solution. The solution obtained by
using the virtual-force distribution and the Green’s function gives a solution of the
homogeneous equation. The virtual-force distribution is then determined by imposing the
prescribed boundary conditions. This method is similar to the image-charge method in
electrostatics [1] and is the basis for the boundary-element method [2] for solving
elastodynamic problems.

The Fourier representation of the Green’s function is quite general and, subject to certain
well-known conditions of integrability and convergence [1], can be used for most physical
problems. In the case of elastodynamic Green’s functions, the Fourier representation is
CPU intensive and is not computationally efficient for anisotropic solids. We have
developed a delta-function representation [3] that is particularly suitable for anisotropic
solids. In this paper, we describe the delta-function representation for elastodynamic as
well as elastostatic Green’s functions for infinite solids and its application to bounded
solids by using the virtual- force method.

2. Green’s function method

We represent the space and time variables by x and t, respectively. The Cartesian
components of a vector will be denoted by indices i, j, k, etc., which assume the values
1,2, or 3, corresponding to x, y, and z coordinates. Summation over repeated Roman
indices will be implied unless stated otherwise.

The Christoffel equation for elastic equilibrium is written in the operator form as

Lij uj (x,t) = Fi (x,t), (1)

where

Lij  = cikjl ∂2 ⁄ ∂xk ∂xl  -  δij ρ ∂2 ⁄ ∂ t2,              (2)



c  is the fourth-rank elastic-constant tensor, ρ  is the density of the solid, and F(x,t) is the
applied force. The Green’s function G(x,x’; t,t’) is the solution of the equation

 Lij Gjk (x,x’;t,t’) =  δik δ (x-x’) δ (t-t’), (3)

where x’ and t’ are variables in the same space as x and t, respectively; δik is the

Kronecker’s delta tensor that is 1 for i=j, and 0 otherwise; and δ (x) is the Dirac delta
function defined by the relation

w(a) = ∫ δ (p-a) w(p) dp.       (4)

In eq (4), a is a constant on the real axis and w(p) is any arbitrary integrable function of p,
and the integration is over the entire real axis.  We have used the same symbol for the
Dirac delta function and the Kronecker delta tensor since they can be identified by their
arguments.

The particular solution of eq (1), which can be verified by applying the operator L  and
using eqs (3) and (4), is given by

up(x,t) = ∫ G(x,x’;t,t’) F(x’,t’) dx’ dt’.    (5)

The integration in eq (5) is over the entire space of x and t. For an infinite solid with no
boundary conditions prescribed over space, eq (5) gives the final solution. For infinite
solids, G depends on x and x’ and t and t’ only through their differences x-x’ and t-t’,
respectively.  In such cases G can be denoted by a single space and time variable as
G(x-x’, t-t’) or G(x,t) that implies x’=t’=0.

For solids with spatial discontinuities, such as bounded solids or those containing holes,
crack, interfaces, etc., we need to satisfy some prescribed boundary conditions. Let S
specify the space of the solid over which we need to solve eq (1) with boundary conditions
prescribed over the surface of S. Equation (5) still gives the particular solution of eq (1)
with the integration over x’ restricted to S. To obtain the homogeneous solution, we apply
a distribution of virtual forces f(xS,t) over the surface of S. The function f(x,t) is 0
everywhere except for x = xS, where xS lies over the surface of S. The homogeneous
solution, as in eq (5), is given by

uH(x,t) = ∫ G(x-x’; t-t’) f(x’,t’) δ (x’-xS) dx’ dt’.              (6)

Since eq (6) gives the homogeneous solution for arbitrary f(xS ,t), we determine this
function by imposing the boundary conditions. This is the essence of the Green’s function
method. For solids with simple geometrical surfaces, we can determine f(xS ,t) analytically.
For solids with complicated geometrical shapes,  f(xS,t) has to be determined numerically
as is done in the boundary-element method. The solution of eq (1), that is the



displacement field u(x,t) for an applied unit force, subject to all the prescribed boundary
conditions, is  the Green’s function for the solid.

The above derivation shows how Green’s function for any geometrical structure can be
built up in stages or modules. For example if G(x,t) is the free space Green’s function for
an infinite solid, then to obtain Green’s function for a semi-infinite solid with one free
surface, we apply a virtual force just outside the free surface and add a homogeneous
solution to the solution for the infinite solid. We then determine the virtual force by
applying the boundary condition at the free surface. The Green’s function thus obtained
will be the Green’s function for the semi-infinite solid. If we want to add another free
surface or any other discontinuity like a hole in the solid, we apply another virtual force at
the new surface or the discontinuity. We add this homogeneous solution to that obtained
by using the Green’s function for the semi-infinite sold. We determine the new virtual
force by imposing the additional boundary conditions at the discontinuity. Only the
additional boundary condition needs to be satisfied since the semi-infinite Green’s function
will automatically satisfy the boundary condition at the first free surface.

In the linear case, f(xS, t) will be proportional to F(x,t). Hence the boundary conditions
will be satisfied for all F(x,t). The Green’s function thus obtained will therefore be
independent of F(x,t). The Green’s function is a characteristic of the solid including
discontinuities, if any, and does not need to be recalculated for a different applied load. It
should be useful, therefore, that the Green’s functions for typical geometrical shapes can
be stored in a central computer and made available to other users. The idea of such a
library of Green’s functions has been recently suggested by Rizzo [4].

3. Integral representation for Green’s functions

In general it is possible to use the three-dimensional (3D) Fourier integral representation
for the Green’s function as given below:

G(x,t) =  (2π)-4 ∫ GF(K, ω)  exp ι(K.x - ωt) dK dω       (7)

where ι2 = -1, GF(K, ω) is the Fourier transform of the Green’s function, K is the wave

vector, and ω is the frequency; and the integration in eq (7) is over the entire space. From
eqs (2) and (3)

GF(K, ω) =  [ΛΛ (K) - I ρω2]-1 , (8)

where

Λ ij (K) = cikjl Kk Kl . (9)

The 3x3 matrix ΛΛ(K) is the Christoffel matrix in Fourier space. It is the long-wavelength
(low-K) limit of the Born-von Karman dynamical matrix [5]. Its eigenvalues ω2(K) are the



squares of the phonon frequencies and its eigenvectors are the polarization vectors of the
corresponding phonons. Equation (7) along with eqs (8) and (9) can be used for
calculating the Green’s function. The Green’s function thus calculated will not be causal.
To ensure causality, we can introduce a small imaginary part in ω [5] and take the limit as
the imaginary part approaches 0. Alternatively, we can take the Laplace transform over
time and use the Laplace inversion integral in eq (7).

For an isotropic solid, the matrix inversion in eq (8) and the integration in eq (7) can be
done analytically. The Green’s function can also be obtained analytically [6] from eq (7)
for a line force, or a 2D approximation, since the component of K in the direction of the
line force is 0.  For a general 3D anisotropic solid, eq (7) requires a 4D numerical
integration– over three components of K, and one frequency variable. In general GF(K, ω)
has singularities (resonances) on the real axis. The integral in eq (7) is defined in the
Cauchy sense. It involves evaluation of principal values that creates problems of numerical
convergence. A numerical evaluation of the general 3D anisotropic Green’s function using
the Fourier representation is CPU intensive. Some shortcuts for evaluating the Green’s
function are available in the literature (see refs. [3] and [7] and other references quoted
therein).

We have developed a delta-function representation of the Green’s function [3] that is
computationally convenient even for 3D anisotropic solids. In this representation we write

G(x,t) =  (4π3)-1 ∫ Gq(q)  δ(1)(t-q.x ) H(t) dq, (10)

where

Gq (q) = Limε→+0 Im [ΛΛ (q) - (1-ιε) I]-1,     (11)

Λ ij (q) = cikjl qk ql ,     (12)

H(t) is the Heaviside step function, being unity for t >0 and 0 for t<0 , δ(1) is the first
derivative of the delta function with respect to its argument, and q, that has the
dimensions of inverse velocity, is a vector in slowness space . We identify ΛΛ(q) as the
Christoffel matrix and Gq(q) as the Green’s function in the slowness space. The delta
function in eq (10) is a statement of the physical fact that a phonon of slowness value q
will reach the distance x in time t, then its velocity 1/q must be x/t. The function Gq (q)
represents physically the weight or number of phonons of slowness vector q that the solid
can provide. If, instead of the imaginary part on the RHS of eq (11), we take the real part,
use the delta function of t-q.x instead of  its derivative,  and remove H(t), then eq (10) is
the Radon transform of the elastodynamic Green’s function. The Radon representation of
the Green’s function has been developed by Wang and Achenbach [7] and applied to
several interesting cases.



Using the representation of the delta function, we obtain from eq (11)

 Gq (q) = -π  ∑s esi (q) esj (q) δ [E2
s (q) - 1], (13)

where es (q)  (s =1,2,3) and E2
s (q)  are, respectively, the eigenvectors and eigenvalues of

ΛΛ(q). The right hand side of eq (10) requires integration over three variables – the three
components of q. However, the integrand is a product of two delta functions. Hence the
integration over any two of the three variables is done analytically simply by substituting
for their values determined by the delta functions. Numerical integration is required over
only one variable. Moreover, the integrand is not singular and does not contain oscillatory
functions. Consequently the delta-function representation is computationally much more
efficient relative to the Fourier representation in eq (7).

Finally, the solution of the homogeneous equation, which can be verified by direct
substitution for arbitrary f(q), is given by

uH(x,t) =  (4π3)-1 ∫ Gq(q) f(q) δ(1)(t-q.x) dq. (14)

The virtual force f(q) has to be determined by imposing the boundary conditions.
Application of eq (14) to calculate the elastic waveforms in anisotropic solids has been
given in [3].  Equations (10) and (14) reduce to corresponding elastostatic Green’s
function in the limit t=+0.
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